期刊简介
本刊是综合性学术期刊,主要刊登人工器官、生物材料、生物力学、生物信息与控制、生物医学测量、医药工程、生物工程、中医工程、计算机在医学中的应用、医疗器械等方面的理论研究和最新成果。适合从事生物医学工程的科研、工程人员及临床医生阅读,面向国内外公开发行。
往期目录
-
1999
-
2000
-
2001
-
2002
-
2003
-
2004
-
2005
-
2006
-
2007
-
2008
-
2009
-
2010
-
2011
-
2012
-
2013
-
2014
-
2015
-
2016
-
2017
-
2018
-
2019
首页>北京生物医学工程杂志

- 杂志名称:北京生物医学工程杂志
- 主管单位:北京市卫生健康委员会
- 主办单位:北京市心肺血管疾病研究所
- 国际刊号:1002-3208
- 国内刊号:11-2261/R
- 出版周期:双月刊
期刊荣誉:北京市优秀作品编辑奖(89)期刊收录:维普收录(中), 知网收录(中), 万方收录(中), 统计源核心期刊(中国科技论文核心期刊), 国家图书馆馆藏, 上海图书馆馆藏
基于核函数极限学习机和小波包变换的EEG分类方法
王丽;兰陟;杨荣;王强;李宏亮
关键词:脑-机接口, 小波包变换, 核函数极限学习机, 分类方法
摘要:目的 为实现运动功能障碍患者的运动意愿,基于脑-机接口(brain-computer interface,BCI)的康复训练技术是近年来的研究热点.脑-机接口的关键技术是快速准确地识别出与运动想象相关的脑电模式.针对脑电信号非平稳及个性化差异等特点,利用小波包理论和核函数极限学习机(extreme learning machine,ELM)方法 ,提出一种自适应的特征分类方法来提高脑电信号的分类识别率.方法由于小波包存在着频带交错的现象,所以首先利用距离准则将自适应提取的优小波包的平均能量作为特征向量,并采用核函数ELM方法进行分类.后利用BCI竞赛数据进行了脑电信号特征分类的仿真研究,并对不同算法的分类识别率进行仿真分析.结果 自适应特征分类方法对用于实验的脑电数据的平均分类识别率达到97.6%,对比ELM、神经网络(back propagation,BP)和支持向量机(support vector machine,SVM)分类方法,核函数ELM方法在分类时间和识别精度上效果佳.结论 本文提出的脑电信号分类方法取得了较高的分类识别率,适用于脑电信号的分类应用.
友情链接