期刊简介

本刊是综合性学术期刊,主要刊登人工器官、生物材料、生物力学、生物信息与控制、生物医学测量、医药工程、生物工程、中医工程、计算机在医学中的应用、医疗器械等方面的理论研究和最新成果。适合从事生物医学工程的科研、工程人员及临床医生阅读,面向国内外公开发行。

首页>北京生物医学工程杂志
  • 杂志名称:北京生物医学工程杂志
  • 主管单位:北京市卫生健康委员会
  • 主办单位:北京市心肺血管疾病研究所
  • 国际刊号:1002-3208
  • 国内刊号:11-2261/R
  • 出版周期:双月刊
期刊荣誉:北京市优秀作品编辑奖(89)期刊收录:维普收录(中), 知网收录(中), 万方收录(中), 统计源核心期刊(中国科技论文核心期刊), 国家图书馆馆藏, 上海图书馆馆藏
北京生物医学工程杂志2017年第05期

自回归模型和隐马尔可夫模型在癫痫脑电识别中的应用

李飞;戴加飞;李锦;王俊;侯凤贞

关键词:癫痫, 脑电信号, 自回归模型, 隐马尔可夫模型, 脑机接口
摘要:目的 研究自回归(autoregressive model,AR)模型和隐马尔可夫模型(hidden Markov model,HMM)在癫痫脑电(electroencephalogram,EEG)识别中的应用,以期减轻医生工作量,减少人工识别主观因素的影响.方法 使用基于联合信息准则(combined information criterion,CIC)的佳阶数AR模型对脑电信号进行特征提取,连续密度隐马尔可夫模型(continuous density hidden Markov model,CD-HMM)作为正常脑电和癫痫脑电的分类工具,对南京军区总医院的临床脑电数据(8组采样频率为512 Hz的16导正常、癫痫脑电信号)进行分析和识别.实验时对每一例样本选取T3、T4、FP1、FP2、C3、C4六个导联的数据.使用训练集中的15段样本进行HMM建模,剩下35段用作测试.结果 癫痫脑电的识别率可达90%.结论 AR模型结合HMM建模的方法对正常脑电信号和癫痫脑电的识别率较高,在脑-机接口设备的开发中有一定的应用前景.