期刊简介

本刊是综合性学术期刊,主要刊登人工器官、生物材料、生物力学、生物信息与控制、生物医学测量、医药工程、生物工程、中医工程、计算机在医学中的应用、医疗器械等方面的理论研究和最新成果。适合从事生物医学工程的科研、工程人员及临床医生阅读,面向国内外公开发行。

首页>北京生物医学工程杂志
  • 杂志名称:北京生物医学工程杂志
  • 主管单位:北京市卫生健康委员会
  • 主办单位:北京市心肺血管疾病研究所
  • 国际刊号:1002-3208
  • 国内刊号:11-2261/R
  • 出版周期:双月刊
期刊荣誉:北京市优秀作品编辑奖(89)期刊收录:维普收录(中), 知网收录(中), 万方收录(中), 统计源核心期刊(中国科技论文核心期刊), 国家图书馆馆藏, 上海图书馆馆藏
北京生物医学工程杂志2015年第02期

基于ICA方法去除人工耳蜗ERP信号伪迹的研究

闫立丽;张旭;陈雪清;傅新星;刘斌;钱柏霖

关键词:独立成分分析, 人工耳蜗, 事件相关电位, 伪迹, 去噪
摘要:目的:人工耳蜗植入者的听觉诱发电位含有较大的伪迹信号,影响了其在人工耳蜗植入后的效果评估。功能成像方法由于安全问题和介入性等特点,不适用于人工耳蜗植入者。本文利用独立成分分析( independent component analysis,ICA)去除人工耳蜗伪迹,为进一步利用听觉诱发电位信号客观评价人工耳蜗植入者言语识别能力和人工耳蜗植入效果提供便利。方法采用经典 Oddball 模式,分别以言语声/ba/和/da/为标准刺激和偏差刺激,测量人工耳蜗植入者的听觉事件相关电位( event-related potential,ERP),采用 ICA方法去除 ERP信号中人工耳蜗造成的伪迹,并分析其独立成分的时域波形和脑地形图特征。本文对10例人工耳蜗植入6个月的受试者进行 ERP测试,并比较了 Infomax和Jade两种算法去除人工耳蜗伪迹的效果。结果根据独立成分的时域波形和脑地形图特征,可以将人工耳蜗伪迹对应的独立成分识别出来。人工耳蜗伪迹独立成分的时域波形类似于一个基座,其脑地形图显示在植入侧有较高的电位。去除人工耳蜗伪迹后的 ERP波形显示出原始的形态。Infomax算法能够更有效地去除 ERP信号中的人工耳蜗伪迹。结论 ICA方法可以有效地将人工耳蜗伪迹从人工耳蜗植入者的 ERP信号中分离出来。