期刊简介

本刊是综合性学术期刊,主要刊登人工器官、生物材料、生物力学、生物信息与控制、生物医学测量、医药工程、生物工程、中医工程、计算机在医学中的应用、医疗器械等方面的理论研究和最新成果。适合从事生物医学工程的科研、工程人员及临床医生阅读,面向国内外公开发行。

首页>北京生物医学工程杂志
  • 杂志名称:北京生物医学工程杂志
  • 主管单位:北京市卫生健康委员会
  • 主办单位:北京市心肺血管疾病研究所
  • 国际刊号:1002-3208
  • 国内刊号:11-2261/R
  • 出版周期:双月刊
期刊荣誉:北京市优秀作品编辑奖(89)期刊收录:维普收录(中), 知网收录(中), 万方收录(中), 统计源核心期刊(中国科技论文核心期刊), 国家图书馆馆藏, 上海图书馆馆藏
北京生物医学工程杂志2013年第02期

基于PCA和Fisher判别分析的锋电位在线分类算法

卢小银;梁振;周保琢;周逸峰

关键词:锋电位, 在线分类, 主成分分析, Fisher判别分析, 模板匹配, 神经网络
摘要:目的 大脑神经元胞外单细胞动作电位(即锋电位)的检测与分类,是研究神经系统处理信息机制的关键.常用方法是实验完成后对记录到的数据进行离线检测与分类,然而当需要在短时完成大量数据的处理或无线传输时,则需实现锋电位的在线检测与分类.方法 为实现在线分类,本文在利用主成分分析法(principal component analysis,PCA)和K均值分类法对一定量数据进行预分类的基础上,提出使用PCA结合Fisher判别分析的方法,并与基于距离的模板匹配法、BP神经网络分类法进行了分类效果和算法复杂度的比较.结果 仿真结果表明,该方法相对于其它两种方法在分类效果和算法复杂度上都具有一定的优势.结论 此方法是实现锋电位在线分类的不错选择.